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1. 

The low transverse moduli in fiber-reinforced composite plates and shells manifest
a greater susceptibility to transverse shear and normal deformations. As a result,
the range of application of classical theory for this class of structures is abbreviated
vis à vis those fabricated of homogeneous, isotropic materials. To extend this
range, transverse shear deformation must be included as its effect on flexural
behavior can be pronounced. For example, classical theory predictions of lowest
flexural frequencies of vibration of laminated plates and shells can be significantly
higher than the actual frequencies if appreciable shear is present. Modifications
of classical theory to account for shear deformation fall within the the realm of
first-order shear deformation (FSD) theories.

Various FSD theories for laminated anisotropic plates and shells have appeared
in the literature, namely, references [1–6]. The essence of any FSD theory is a
viable shear constitutive equation relating the shear resultants Q1 and Q2 to their
corresponding generalized shear angles g1z and g2z through the shear rigidities Gij’s:

$Q1

Q2%=$G55

G45

G45

G44%$g1z

g2z%. (1)

The stiffnesses Gij’s are often expressed in terms of shear correction factors kij’s
as

G55 = k2
11A55 , G44 = k2

22A44 , G45 = k2
12A45, (2)

where the Aij’s are integrals of each layer’s shear moduli, Q(k)
55 , Q(k)

44 , Q(k)
45 , over the

thickness of the laminate profile, i.e.,

(A55, A44, A45)=gz

(Q(k)
55 , Q(k)

44 , Q(k)
45 ) dz. (3)
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Historically, Reissner [7] and Mindlin [8] were the first to incorporate shear
deformation in a theory for homogeneous, isotropic plates. Reissner’s [7]
correction factors, based on elastostatics, have values of k2

11 = k2
22 =5/6, while

those of Mindlin [8], from matching thickness-shear frequencies of infinitely long
waves with those predicted by linear elasticity, are k2

11 = k2
22 = p2/12. In terms of

the notation of equation (2), their shear rigidities take the form of
G55 =G44 = k2

11GH and G45 =0 with G as the shear modulus and H the plate
thickness.

Dong and Tso [3] and Dong and Chun [6] extended Mindlin’s methodology to
FSD theories for laminated orthotropic shells, where the natural orthotrophy axes
follow the co-ordinate lines, and laminated anisotropic shells/plates, respectively.
For laminated orthotropic shells/plates, there are two distinct rigidities, G55 and
G44 with G45 =0. These rigidities are based on thickness-shear motions that are
naturally polarized in two mutually orthogonal plates. For laminated anisotropic
shells/plates, a fundamental dilemma occurs because of a complete absence of
polarized motions in two mutually orthogonal principal planes. To work past this
dilemma, Dong and Chun [6] suggested the concept of generalized principal planes
for establishing the shear constitutive relations for laminated anisotropic shells and
plates. The values of G55, G44 and G45 were found to depend strongly upon the ratio
of the transverse shear moduli in directions parallel and normal to the fiber. When
the two shear rigidities are equal, the correction factors are the same as those of
Mindlin, i.e., p2/12. But when this ratio differs substantially from unity, the shear
correction factors are dramatically different from the values for a homogeneous,
isotropic plate. The efficacy of these shear constitutive relations was verified by
Chun and Dong [9] by comparing frequencies for laminated anisotropic cylindrical
shells with those based on three-dimensional elasticity.

In this letter, the essential ingredients of a conical element that incorporates
shear deformation for modelling shells of revolution are described, and shear
deformation effects are illustrated by finite element calculations of natural
frequencies of vibration of spherical and toroidal shells. Results based on classical
and FSD theories are compared. To the best of these authors’ knowledge, a FSD
theory conical frustum with asymmetric behavior capabilities in shells of
revolution has yet to appear in the literature. Nevertheless, the finite element
formulation methodology is well established, so that only the interpolations of its
kinematics need to be indicated herein.

An extensive body of literature exists on finite element modelling of shells of
revolution. Classical theory conical frusta are well documented; see, for example,
references [10–14]. Curved elements have also appeared; see references [15, 16].
With respect to transverse shear capabilities, Tessler [17] presented a two-node
conical element based on interdependent variable interpolations. This concept
obviates shear locking or parasitic shear without recourse to selective reduced
integration. More recently, Paramasivam and Muthiah Raj [18] presented a higher
order conical element. Both Tessler and Paramasivam and Muthiah Raj restricted
their attention to axisymmetrical deformation of homogeneous, isotropic shells.
FSD curved elements are also available for axisymmetrically loaded homogeneous,
isotropic shells; see references [19–21]. Other element formulations for the analysis
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of laminated anisotropic axisymmetric shells include those by Noor and Peters
[22–24] (a curved element using a mixed finite element formulation) and Panda and
Natarajan [25] (a superparametric element). Both of these elements possess
transverse shear and normal deformation effects. Although not exhaustive, these
references should illustrate the wealth of research invested in the modelling of
shells of revolution.

2.    

Consider a conical frustum, as shown in Figure 1, whose semi-vertex angle is
a. Let (s, u, z) be surface and normal co-ordinates and let t denote time. Let
(us , uu , uz ) be the reference surface displacements in the (s, u, z) directions,
respectively, and let (bs , bu ) be the bending rotations about the two reference
surface axes. The basic equations of FSD theory for laminated anisotropic
shells/plate are contained in Dong and Chun [6]. For the conical frustum, whose

Figure 1. Nodal degrees of freedom for elements: (a) FSD theory, (b) classical theory.
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nodal degrees of freedom are labelled in Figure 1, the interpolation of these five
kinematic variables takes the form

us (s, u, t) n1(s) · · · · us (u, t)

uu (s, u, t) · n1(s) · · · uu (u, t)

uz (s, u, t) = · · n2(s) · · uz (u, t) (4a)G
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bs (s, u, t) · · · n1(s) · bs (u, t)

bu (s, u, t) · · · · n1(s) bu (u, t)

or

u(s, u, t)= n(s)uo(u, t), (4b)

where n1(s) and n2(s) contain first and second order Lagrangian functions and the
displacement array uo contains the nodal degrees of freedom. The interdependent
interpolation strategy of having the polynomial for the transverse displacement
one order higher than that for bending rotations avoids shear locking or parasitic
shear without recourse to selective reduced integration. With the polynomial for
uz one order higher than that for the rotations, kinematic freedom is
mathematically admitted for the vanishing of transverse shear strains should they
in fact be physically insignificant in the overall behavior. It is noted that selective
reduced integration of a displacement field with the same order polynomial for
transverse displacement and rotation yields the same result as interdependent
interpolation, because selective reduced integration effectively extracts weighted-
average values of the integrals instead of capturing the exact values that cause in
shear locking. The concept of interdependent interpolations was first used by
Tessler and Dong [26] for Timoshenko beam elements.

For the sake of clarity in the numerical examples, the interpolations for conical
element based on classical theory are also mentioned. When shear is absent, the
rotations bs and bu are given by

bs = − uz,s , bu =−
1
r

(uz,u −cos (a)uu ). (5)

Only the reference surface displacements (us , uu , uz ) require interpolations. The
nodal degrees of freedom for the classical theory element are shown in Figure 1
and the interpolation field is given by

us (s, u, t)
n1(s) · · · us (u, t)

uu (s, u, t) =
· n1(s) · · uu (u, t)

(6a)G
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u(s, u, t)= nuo(u, t), (6b)
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where n1(s) and h1(s), h2(s) contain Lagrangian and Hermitian polynomials and
the array uo in this case contains the nodal degrees of freedom shown in
Figure 1.

3.    

The finite element discretization of the shell of revolution consists of an
assemblage of conical frusta linked together according to inter-element kinematic
continuity. Hamilton’s principle underlies the problem formulation for both FSD
and classical theories. For FSD theory, the discrete equations of motion are

Ks1Qs +Ks2Qs,u −Ks3Qs,uu +MsQ� s = 0, (7)

and that for classical theory are

Kc1Qc +Kc2Qc,u −Kc3Kc,uu +Kc4Qc,uuu +Kc5Qc,uuuu +McQ� c = 0, (8)

where Ksi and Kci and Ms and Mc are the global stiffness and mass matrices and
Qi are assembled nodal degrees of freedom referred to radial, circumferential and
axial directions in a common cylindrical co-ordinate system for all elements. It is
noted that Ks1, Ks3 and Kc1, Kc3, Kc5 are symmetric matrices, while Ks2 and Kc2, Kc4

are antisymmetric.
The solution form for natural vibrations in both cases is

Qi =Qo ei(nu+vt), (9)

where n is a circumferential mode number, v is the natural circular frequency, and
Qo denotes modal pattern. Because of circumferential periodicity, only integer
values of n are admissible. Substituting this solution form into the two discrete
equations of motion gives

([Ks1 + n2Ks3]+ inKs2)Qo =v2MsQo , (10)

([Kc1 − n2Kc3 + n4Kc5])+ i[nKc2 − n3Kc4]Qo =v2McQo . (11)

The left-hand side matrix in both cases is Hermitian by virtue of symmetry and
antisymmetry in their real and imaginary parts, respectively. With Mi symmetric,
the algebraic eigensystems assure real eigendata. In the solution, a circumferential
mode number n is assigned and a subset of the lowest squared frequencies is
sought.

4.   

One way to measure shear deformation is by comparing the shear energy ratios
of the various natural modes. Such a calculation can be carried out a posteriori
to the eigensolution. Let fnm denote the mode shape of vibration for the mth
meridional mode with the nth circumferential mode number. The squared
frequency v2

nm is given by

v2
nm =

fT
nmKfnm

fT
nmMifnm

, (12)
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where K denotes the left-hand sides of equations (10) and (11) for FSD and
classical theories. The eigenvectors in the present calculations are mass-orthonor-
malized so that the denominator in equation (12) is unity.

Let C be the combined matrix of 3×3 submatrices of the various extensional,
coupling and flexural rigidities Aij’s, Bij’s, and Dij’s and 2×2 submatrix of shear
rigidities Gij’s in the shell/plate constitutive relation, i.e.,

C= &AB· B
D
·

·
·
G'. (13)

To separate energy components in FSD theory, partition C as

C=Cmem +Cbend +Cshear = & A
0·5B

·

0·5B
·
·

·
·
·'+ & ·

0·5B
·

0·5B
D
·

·
·
·'+ &··· ·

·
·
·
G'.
(14)

With this partitioned form of C and the mass-orthonormalized eigenvectors,
equation (12) can be rewritten in terms of stiffness submatrices, Kmem , Kbend , and
Kshear , that reflect the individual contributions of extension, bending and shear to
the squared frequency:

v2 =fT
nm (Kmem +Kbend +Kshear )fnm . (15)

Expanding equation (15) gives the membrane, bending, shear energy proportions
for the nth circumferential mode, respectively, as fT

nmKmemfnm , fT
nmKbendfnm ,

fT
nmKshearfnm . A similar energy decomposition for classical theory is possible; but

in this case, obviously, there is no shear energy.

5. 

The influence of transverse shear deformation on the vibrational characteristics
are illustrated for two shell geometries: (1) truncated spherical shell (Figure 2(a))
and (2) toroidal shell (Figure 2(b)). Two thickness profiles were considered; three-
and four-layer regular 230° laminate profiles with total thickness of unity. The
material properties of the layers are

EL

ET
=20 ,

GLT

ET
=0·5 ,

GTT

ET
= l

GLT

ET
, nLT =0·25 , nTT =0·25, (16)

where L and T denote directions parallel and transverse to the fiber and l

represents the ratio of the transverse shear moduli of this material.
The frequencies of these shells were determined for a range of geometric

parameters such as radius/thickness ratio, circumferential mode number n as well
as shear moduli ratio l. The extensional, coupling, flexural rigidities
(Aij’s, Bij’s, Dij’s) of these regular three- and four-layer laminate profiles with 230°
layup are summarized in Table 1 for the case of the total laminate thickness H
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Figure 2. Shell geometries: (a) 60° truncated spherical shell, (b) toroidal shell.

equal to unity. It should also be remembered that the properties are cast with
respect to given orthogonal curvilinear co-ordinates. The values of the shear
rigidities, G55, G44, G45, for l ratios, 0·1E lE 1·0, are tabulated in Table 2 for the
total laminate thickness H=1. The methodology for defining these shear rigidities
was discussed by the authors [6]. It is noted that the value of l for a typical
fiber-reinforced composite falls somewhere in the range 0·4E lE 0·7. For total

T 1

Aij , Bij , Dij coefficients

ij: 11 12 22 66 16 26

Three-layer symmetric 230° Laminate (H=1)
Aij 11·8169 3·731548 2·287203 3·980760 2·045365 0·705618
Bij · · · · · ·
Dij 0·984721 0·310956 0·190596 0·331733 0·473455 0·163343

Four-layer symmetric 230° laminate (H=1)
Aij 11·81701 3·731583 2·287226 3·980799 · ·
Bij · · · · −0·767020 −0·264620
Dij 0·984751 0·310965 0·190602 0·331733 · ·
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T 2

Shear rigidities for regular 230° angle-ply laminates with H=1

Three-layer laminate Four-layer laminate
ZXXXXXXXCXXXXXXXV ZXXXXXXCXXXXXXV

l G55 G44 G45 G55 G44 G45

1·0 0·41123 0·41123 0·00000 0·41123 0·41123 0·0
0·9 0·40008 0·37957 −0·00387 0·40006 0·37955 0·0
0·8 0·38684 0·34620 −0·00769 0·38676 0·34611 0·0
0·7 0·37087 0·31102 −0·01135 0·37071 0·31080 0·0
0·6 0·35122 0·27392 −0·01474 0·35096 0·27349 0·0
0·5 0·32649 0·23477 −0·01764 0·32617 0·23405 0·0
0·4 0·29455 0·19343 −0·01973 0·29427 0·19236 0·0
0·3 0·25211 0·14970 −0·02045 0·25208 0·14826 0·0
0·2 0·19409 0·10332 −0·01886 0·19453 0·10161 0·0
0·1 0·11307 0·05379 −0·01316 0·11390 0·05224 0·0

laminate thickness H$ 1, the values listed in Tables 1 and 2 may be scaled
accordingly to give appropriate values.

5.1 Truncated spherical shells
In the 60° truncated spherical shell shown in Figure 2(a), clamped boundary

conditions on the equatorial circle and free conditions on the 60° latitude circle

Figure 3. (a) Frequency spectra (. . . . . , classical theory; —, FSD theory) and (b) shear energy
ratio in symmetric three-layer 230° angle-ply spherical shell, R/H=10: for first mode and
circumferential modes, n=0, 1, 2, 3.
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Figure 4. (a) Frequency spectra (. . . . . , classical theory; —, FSD theory) and (b) shear energy
ratio in symmetric three-layer 230° angle-ply spherical shell R/H=100: for first mode and
circumferential modes, n=0, 1, 2, 3.

were taken. Two radius/thickness ratios, R/H=10 and 100, representative of
thick and thin shell geometries, respectively, were considered. The transverse shear
moduli ratio l was varied between 0·1 and 1·0. The frequencies are
non-dimensionalized as V=vR/zET /r, where r is the unit mass density.

Data for the regularly symmetric three-layer laminate profile are shown in
Figures 3 and 4 for R/H=10 and 100, respectively. In Figure 3, V for
circumferential mode numbers, n=0, 1, 2, 3, and the proportion of transverse
shear strain energies in each of these modes are plotted as a function of l. The
dotted frequency curves are for classical theory results. The percentage differences
between the results of the two theories reflect the levels of shear deformation. For
l:1, shear becomes less prominent; conversely, as l:0, shear plays a greater role.
Corresponding results for R/H=100 (thin shell geometry) are shown in Figure
4, revealing only minor shear effects.

Data for the regularly antisymmetric four-layer laminate profile are shown in
Figures 5 and 6 for the cases of R/H=10 and 100, respectively. The main
difference between the three- and four-layer profiles is the presence of
extensional–flexural coupling through coefficients B16 and B26. The trends observed
in Figures 3 and 4 for thick and thin shell geometries are mirrored in Figures 5
and 6.
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5.2 Toroidal shells
The toroidal shell geometry under consideration is shown in Figure 2(b). For

this configuration, the studies of Kosawada et al. [27, 28] bear directly to our
discussion. Their vibration results for homogeneous, isotropic toroidal shells
showed that shear plays a minor role on the fundamental frequency (i.e., lowest
mode), even though the shell geometries fall within the thick shell category (they
considered R/H ratios of 9·13, 6·45 and 4·08). The explanation for this interesting
and remarkable phenomenon can be explained by the fact that the fundamental
mode of a toroidal shell contains membrane energy primarily, with bending (and
thus transverse shear) of secondary influence. Their higher modes do in fact
contain significantly more bending and transverse shear, so that these frequencies
by FSD theory differ more with those of classical theory.

Let non-dimensional frequency V be defined in the same way as that for the
spherical shell, but with R in this case as the radius of the meridional circle. In
Figure 7, plots of V over the range 1·5EA/RE 10·0 are presented for a four-layer
regular laminated composite 230° shell. Two cases, l=0·5 and 0·1, were
considered with the former representative of a typical fiber-reinforced composite
and the latter chosen to test the extent of the influence of a substantially weaker
shear modulus. Plots in Figure 7(a) (R/H=10) and 7(b) (R/H=100) show very
slight differences in the frequencies of the fundamental modes for circumferential
mode numbers n=0, 1, 2, 3 between those of classical and FSD theories. Even in

Figure 5. (a) Frequency spectra (. . . . . , classical theory; —, FSD theory) and (b) shear energy
ratio in antisymmetric four-layer 230° angle-ply spherical shell, R/H=10: for first mode and
circumferential modes, n=0, 1, 2, 3.
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Figure 6. (a) Frequency spectra (. . . . . , classical theory; —, FSD theory) and (b) shear energy
ratio in antisymmetric four-layer 230° angle-ply spherical shell, R/H=100: for first mode and
circumferential modes, n=0, 1, 2, 3.

the case of l=0·1, the frequencies were mildly different. Therefore, the essential
behavior of this laminate profile is essentially membrane, and Kosawada et al.’s
conclusion for homogeneous, isotropic shells, also apply here for a significant
orthotropy ratio EL /ET =20. The higher modes, although not presented herein,
do show wider differences in the frequencies, reflect a greater presence of transverse
shear.

6.  

The essence of a conical frustum shell element was presented for the
axisymmetric and asymmetric analyses of laminated anisotropic shells of
revolution that includes transverse shear deformation. In FSD theory, suitable
transverse shear rigidities, G55, G44, and G45 are needed. The determination of these
rigidities were discussed by the authors [6, 9] previously. The element is based on
an inter-dependent displacement field interpolation, that obviates pathological
shear locking without recourse to selected reduced integration. Although linear
and quadratic interpolations were indicated herein, an improved element with
higher order interpolations, such as that used by Paramasivam and Muthiah Raj
[18], should be considered. Such capabilities would lead to comparable accuracies
with substantially fewer elements in a given model.

Shear effects were evaluated by comparison of results for truncated spherical
shells and toroidal shells by classical and FSD theories. The amount of transverse
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Figure 7. (a) Frequency spectra for antisymmetric four-layer 230° angle-ply toroidal shell
R/H=10: for first mode and circumferential modes, n=0, 1, 2, 3: (a) R/H=10, (b) R/H=100.
—, Classical theory; . . . . , FSDT (l=0·5); ---, FSDT (l=0·1).

shear energy in relation to the other energies correlates directly to the differences
between the frequencies of these two theories.
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